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Theorems on directed graphs are used to obtain results on the enumeration of orthogonal space groups 
in arbitrary dimensions. In dimension 3 the graphs themselves provide a convenient notation for the 
orthorhombic space groups. 

Recent work on space groups in arbitrary dimensions 
by various authors (Billow, Neubilser & Wondrat- 
schek, 1971; Maxwell, 1975) has suggested algorithms 
for enumerating the space groups of certain crystal 
classes. In this paper we show how certain results 
(Schwarzenberger, 1974) can be interpreted to yield an 
enumeration of orthogonal space groups by directed 
graphs. This is of interest for two reasons. Firstly, the 
orthogonal space groups appear to be a particularly 
numerous family; thus one may hope that the work 
done on the enumeration of directed graphs [for refer- 
ences see Harary (I969)] might yield approximate es- 
timates of the total number of space groups for a given 
dimension. Secondly, the enumeration for dimension 
3 suggests for orthorhombic space groups a convenient 
diagram from which their Herman-Mauguin symbol 
may be readily found in any setting; it might therefore 
form the basis of a convenient classroom method for 
the derivation of the groups. 

I. Orthogonal groups in arbitrary dimensions 

Let N be a group of isometrics in n-dimensional space. 
Elements of ~¢ may conveniently be represented in the 
form (v, 0) where v is a translation vector and 0 is an 
orthogonal transformation. The action of (v, 0) is then 
to send x to (v,0) ( x ) = v + 0 x .  The lattice of fY is by 
definition the set T of all translation vectors t such 
that (t,t)ef¢. Here, and in what follows, t denotes the 
identity transformation, so that the action of (t, t) is to 
send x to t + x. The point group of N is the set J¢' of 
all orthogonal transformations 0 such that (v, 0 )e~  for 
some translation vector v (not necessarily a vector in 
T). The equation 

(v,0) (t,t) (v,O)-~=(Ot, t) 
shows that Ot~T for all t~T, 0~o~d '. Thus ~ is a sub- 
group of the symmetry group of T (by definition the 
set of all orthogonal transformations (p such that rpt~T 
for all t~T). The group ~ belongs to the orthogonal 
crystal system if the symmetry group of T is generated 
by n reflexions/~1,.. . , /z,  in mutually orthogonal hy- 
perplanes. We denote this group by the symbol m . . .  m 
(n factors). In the case n = 3  orthogonal groups are 
usually called orthorhombic. The group ~ determines 

the geometric crystal class of f¢; this is to be distin- 
guished from the arithmetic crystal class which depends 
on the pair T,~f' [for terminology see Btilow, Neubiiser 
& Wondratschek (1971) and Burckhardt (1966)]. 

Let eieT be a shortest vector perpendicular to the 
mirror hyperplane of ~ .  Then T consists of all integral 
combinations of el . . . .  , e, with the addition, for centred 
lattices, of points which differ from an integral com- 
bination by a vector of the form 

t=½ ~ b,e, 
i 

where b~ is 0 or 1. It is convenient to denote such a 
centring vector t by the vector (b~ . . .  b,,). If there are 
no centrings then T is said to be primitive and denoted 
P. If the only centring is (1 . . .  1) then T is said to be 
centrally centred and denoted Z, or I when n = 3; if all 
possible centrings (bx . . .  b,) with Y b~ = 0 rood 2 occur 

then T is said to be everywhere face centred and denoted 
U, or F when n = 3 [for these and other notations see 
Billow, Neubtiser & Wondratschek (1971)]. Other cen- 
trings may occur when n > 3. It was shown in a previ- 
ous paper [see § 3 of Schwarzenberger (1974)] how a 
choice of centring corresponds to a choice of vector 
space over the field with two elements 0 and 1, and 
how the vector space determines the lattice T. The 
number of distinct lattices obtained in low dimensions 
is given by: 

Theorem 1. The number O, of distinct orthogonal lat- 
tices in n-dimensional space for n = 2 , 3 , 4  is 2,4,8. 
Higher values are Os= 16, 06=36,  O7=80. 

2. Enumeration of primitive orthogonal groups 

Let ~' be an orthogonal group with primitive lattice T. 
Then/h~af '  implies (vi,/h)e~' for some translation vec- 
tor vi. The equation 

(Vl, ]./i) 2 "-- (VI -'}-]./lVi, l) 

holds since each /h  has order 2. It implies that w~ = 
v~+chv~T and that vi can then be chosen so that 

Wl= ~ ai jej  and  v i =  ~X2aijej  
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where a~j is 0 or 1. If w~ is non-zero then (v~,p~) is a 
glide with translation component given by the non- 
zero values of a~j. These values may be represented on 
a directed graph with n vertices in which a directed 
edge runs from the ith vertex to the j th  vertex if and 
only if alj = 1. We obtain: 

Theorem 2.1. The groups of arithmetic crystal class 
P m . . .  m (n factors) are in one-one correspondence 
with the directed graphs with n vertices. 

Corollary: The number d, of such groups for n =  
2,3,4 is 3,16,218 [for complete tables of the various 
directed graphs see Appendix 2 of Harary (1969)]. 
Higher values are ds=9 608, d6=l  540944, dT= 
882033440. In general d, is bounded below by 
2,c,-1)/n!. 

It is easy to modify this representation to deal with 
groups of arithmetic crystal class P m . . .  m ( n -  1 fac- 
tors) where the point group ~ is generated by only 
n -  1 refections #~,. . . , / t ,_~.  These determine n -  1 
mutually orthogonal vectors e l , . . . , e , _ l ~ T  as before; 
since T is primitive it consists of all integral combina- 
tions of these vectors and of the shortest vector e,~T 
orthogonal to all these. Constructing a directed graph 
in the same manner as before we find that there are no 
directed edges leaving the nth vertex which is distin- 
guished from the remaining n - 1  vertices. We obtain: 

Theorem 2.2. The groups of arithmetic crystal class 
Pm . . .  m ( n -  1 factors) in n-dimensional space are in 
one-one correspondence with the directed graphs with 
n vertices, one of which is distinguished and from which 
no directed edges leave. 

Corollary: The number c, of such groups for n--- 
2,3,4 is 2,10,104. Higher values are cs=3 044, c6= 

• \ A  

Pmmm Pmma Pmmn 

Prima Pcca 

A A  
Pnnn Pnna Pnnm 

o • 

Pmm Pma 

A A  
Pnn Pcn 

• / k /  

Pbam Pccrn Pbcrn 

A 
Pbca Pmna 

A A A  
Pccn Pban Pbcn. 

/ . / k / , :  
Pmc Pcc Pmn 

/_L " _'s 
Pbn ,Pba Pca 

Fig. 1. Directed graphs for primitive orthorhombic space 
groups. 

291 968, c7=96 928 992. In general c, is bounded be- 
low by 2("-~)/(n - 1)! and above by 2"-~d,_~. 

When n = 3  these theorems do not, of course, give 
any new information but they do suggest for ortho- 
rhombic space groups convenient diagrams from which 
the Hermann-Mauguin symbol may be readily found 
in any setting. As the basis of a classroom method it 
is simpler than that of Belov (1951) or Belov & Klev- 
tsova (1959). The corresponding directed graphs are 
displayed in Fig. 1; the great advantage of these dia- 
grams is that they do not depend on a choice of setting. 
The Hermann-Mauguin symbol given in Fig. 1 is that 
which results from the setting in which coordinates 
x , y , z  correspond to the vertices 

z 
y x 

and to positions in the symbol Pxyz: in each position 
we write m if no directed edges leave the correspond- 
ing vertex; we write a, b, or c if a single edge leaves 
the vertex and runs to x, y, or z respectively; we write 
n if two edges leave the corresponding vertex (compare 
the diagrams for Pmmm, Pmma and Pmmn in Fig. 1). 

The groups of arithmetic crystal class Pm . . .  m (k 
factors) in n-dimensional space for k < n - 1  can be 
dealt with similarly. The k reflexions Pl . . . . .  /tk deter- 
mine mutually orthogonal vectors el . . . .  ,ek and the 
glide vectors vl . . . .  ,vk must therefore have the form: 

vl=½ ~ a~jej+½att~ 

where 1 < j < k  and t ~ T  lies in the (n-k)-dimensional 
space orthogonal to ex,. . . ,ek. However, there is no 
canonical choice of basis for the latter space: it follows 
that there is no longer a natural representation in terms 
of directed graphs and, equally, that the groups no 
longer belong to the orthogonal crystal system. Each 
group can be represented by a directed graph with n 
vertices, n - k  of which are distinguished and from 
which no directed edges leave; however it is now pos- 
sible for distinct directed graphs to determine the same 
group. The reader will easily verify from this descrip- 
tion that, if ck,, is the number of such groups then 

C k + l = C k , k +  1 < C k , k + 2 <  • . . < e k , 2 k ~ C k , n  

for all n > 2k. Hence c~,. = 2 for n > 1, e2.. = 13 for 
n > 3, and e3,, = 208 for n > 5. 

3. Centrally centred orthogonal groups 

Other lattices yield enumeration methods which are 
an adaptation of those for primitive lattices; we il- 
lustrate this by considering in detail the centrally cen- 
tred lattice Z with centring (1 . . .  1). The centring 
causes an equivalence relation between directed graphs, 
since the vectors 

v~=½ ~ a~jej and v;=½ E (1-a~j)ej 

are related by (v~,/L~) = (z, l) (vi, #l)-  1 and therefore these 
glides determine the same group ft. In terms of directed 
graphs this means that the r directed edges leaving the 
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ith vertex may be replaced by the complementary set 
of n -  1 - r  edges. Such replacements may occur at any 
number of vertices, and the resulting directed graphs 
all determine the same group ~¢. If n is even then such 
replacements alter the parity of the number of edges 
leaving a vertex. We therefore obtain: 

Theorem 3.1. If n is even then the groups of arith- 
metic crystal class Z m  . . .  m (n factors) are in one-one 
correspondence with the directed graphs with n ver- 
tices such that each vertex v has an even number (pos- 
sibly zero) of edges leaving v. 

The case of groups of arithmetic crystal class 
Z m  . . .  m (n factors) for n odd is slightly more com- 
plicated: now each vertex has a parity which is un- 
altered by replacement and is an invariant of the group 
~'. In case n = 3 this labelling of the 3 vertices ( +  for 
even parity, - for odd parity) is sufficient to deter- 
mine N, as shown in Fig. 2 (the choice of Hermann-  
Mauguin symbol is now more arbitrary: the same 
group can, for example, be denoted l m m a  or I m m b  
as is indicated by the label - of the z vertex). For 
higher values of n, whether even or odd, it is more con- 
venient to use the replacements to make the number 
of directed edges leaving each vertex less than n/2. 

Corollary:  The number of groups of arithmetic crys- 
tal class Z m  . . .  m (n factors) is bounded below by 
2n("-2)/n! and for n=2 ,3 ,4 ,5 ,6  is 1,4,19,342,25 112. 

In the case of arithmetic crystal class Z m . . .  m 
( n - 1  factors) the replacements can be used to ensure 
that a t , = 0  for i =  1 , . . . , n - 1 .  Thus the enumeration 
for Z m  . . .  m ( n -  1 factors) in n-dimensional space be- 
comes identical to the enumeration for P m . . .  m 
( n - 1  factors) in (n-1)-dimensional  space, and we 
obtain: 

Theorem 3.2. The groups of arithmetic crystal class 
Z m  . . .  m ( n - 1  factors) in n-dimensional space are in 
one-one correspondence with the directed graphs with 
n -  1 vertices. 

Corollary:  The number of such groups is bounded 
below by 2 ("-1) ( n - 2 ) / ( n - 1 ) ]  and for n=2 ,3 ,4 ,5 ,6  is 
1,3, 16,218,9 608. 

The directed graphs which arise in the case n = 3 are 
illustrated in Fig. 2, together with those which arise 
from the centred lattices: A with centring (011), C with 
centring (110). In all cases replacements arising from 
the existence of centring vectors have been used to ar- 
rive at a directed graph with as few edges as possible; 
positions for edges which have been banned by such 
choices are indicated by dotted lines. This method can 
be applied in all cases where the possible glide vectors 
necessarily have integral multiples of ½ as coefficients; 
it must be modified in cases, such as the everywhere 
face-centred lattice below, in which multiples of ¼ can 
o c c u r •  

lattices in having the largest number of centring points. 
For any orthogonal lattice T, the groups of arithmetic 
crystal class T m  . . .  m (n factors) and T m  . . .  m ( n - 1  
factors) are in one-one correspondence with equiva- 
lence classes of directed graphs with n vertices. The 
precise form of the equivalence relation depends on 
the lattice and in general will be complicated, but when 
T =  U it simplifies to give: 

Theorem 4.1. The groups of arithmetic crystal class 
Um . . .  m (n factors) are in one-one correspondence 
with the (non-directed) graphs with n vertices such that 
each vertex v has an even number (possibly zero) of 
edges with v as vertex. 

Proof :  The glide vectors vl, vj determine a vector 
t~jeU by the equation 

(v,,/zl) (vj,/zj) (v,,/z,) -x (vj,/zj)-x = ( t , j , t ) .  

O,4. 

• + • ÷  

D ~ m m  

D.4 ~ 

O ° . o . . . . . o  

C m m m  

• - 0 - -  • - -  

o4, • ÷  0 "  6 4- 0 -  0 -  

lmma lmaa ]boa. 

/...;. 
Cmcm Cccm 

• - / ; .  
. . . , . . .  

Cmma Cmca Cecal 

o 

.." ... 
/ ' ,  ..*". 

., ".... 

Imm Ima lba 

° ./. A 6 . * * , . * * 0  " ' 0  

Cmm Cmc. Ccc. 

o .q o. o ..-'... _ ,  / ,. ..... 

Amm Abm Area Aba 

Fig. 2. Directed graphs for body-centred and centred ortho- 
rhombic space groups. 

F m m m  F d d d  

4. Everywhere face-centred orthogonal groups 

The everywhere face-centred lattice U stands at the op- 
posite extreme from the primitive and centrally centred 

0 

F r o m  F d d  

Fig. 3. Graphs for face-centred orthorhombic space groups. 
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On the other hand, they can be chosen to have the form 

vt=¼ ~ a~je~ where ~ a l j=0  mod 2 .  

A calculation shows that 

t~j= ½a~jej-½ajie~ 

and therefore alj=aj~ mod 2. The graph representing 
q¢ (Fig. 3) is obtained by joining the ith vertex to the 
j t h  vertex by an edge if and only ifa~j is an odd integer. 

Corollary: The number of such groups is bounded 
below by 2(n-1)(n-:)/Z/n[ and for n=2,3 ,4 ,5 ,6  is 
1,2, 3, 7,16 [for diagrams of the various graphs see 
Appendix 1 of Harary (1969)]. 

Theorem 4.2. The groups of arithmetic crystal class 
U m . . .  m ( n - 1  factors) are in one-one correspon- 
dence with the (non-directed) graphs with n - 1  ver- 
tices. 

Proof: The above description shows that each group 
determines a graph with n vertices, one of which is 
distinguished. An even number of edges end at each 
vertex. Removing all edges which end at the distin- 
guished vertex we obtain the required graph with n -  1 
vertices. 

Corollary: The number of such groups is bounded 
below by 2(n-~)("-2)/Z/(n- 1)! and for n=2 ,3 ,4 ,5 ,6  is 
1,2,4,11,34. 

I wish to thank Dr L. L. Boyle and Dr M. S. Pater- 
son for several helpful discussions. 
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On the basis that quartet invariants are the difference between triplet invariants, we have determined a 
theoretical distribution of the quartet invariant phases. New formulae to estimate triplet invariant 
cosines are described and the results they give for a known test structure are compared. 

Recently, Hauptman (1974) gave an estimate of the 
invariant cosine of the sum of phases of four linear 
dependent reflexions l,m,n,p such that the sum over 
each set of three indices is zero ( l+m+n+p=O).  
Schenk (1973) had already spoken of such invariants 
as quartets of the second kind, and showed that they 
are obtained by constructing the difference of the 
phases of two invariant triplets relative to the same 
reflexion H, e.g. 

~O H "~- ~O K "~  ~O H _ K = O~ H . K , 

and 
~off + (PL + ~on- L = a~, L • 

from which is derived the quartet ~0K + ~0n- K + ~0E + ~0L- n 
(the sum of indices of the four reflexions K, H - K ,  L, 
L - H  is actually equal to zero) with a phase equal to 
(~,.~- ~,~.,). 

The value of the invariant cosine c o s  (~OK~-~gH_K'~- 
~P2+ (PL-H) may be estimated from the moduli of seven 
structure factors Ex, EH_~, EL, EL-H and also EH, EK-L 
and EK+L-n. Such an estimation is more accurate than 
the estimation of the phases all. K or all. L of the gener- 
ating triplets each of which is computed from only 
three structure factors EH, Ex and EH-K or En, EL 
and En-L. 

Furthermore, different algebraic formulae have been 
described to compute the invariant cosine of the phase 
of a triplet from the moduli of the structure factors 
of the whole reciprocal space: (1) triple product for- 
mula (Hauptman, Fisher, Hancock & Norton, 1969) 
and (2) MDKS formula (Fisher, Hancock & Haupt- 
man, 1970). 

We intend, here, to compare results provided respec- 
tively by the estimation of quartet phases and by al- 


